361 research outputs found

    Reports

    Get PDF

    Electromagnetically-induced transparency and light storing of a pair of pulses

    Full text link
    Electromagnetically-induced transparency and light storing are studied in the case of a medium of atoms in a double Lambda configuration, both in terms of dark- and bright-state polatitons and atomic susceptibility. It is proven that the medium can be made transparent simultaneously for two pulses following their self-adjusting so that a condition for an adiabatic evolution has become fulfilled. Analytic formulas are given for the shapes and phases of the transmitted/stored pulses. The level of transparency can be regulated by adjusting the heights and phases of the control fields.Comment: text +6 figure

    Sprawozdanie z "Iressa clinical experience meeting"

    Get PDF

    Endothelial response to glucocorticoids in inflammatory diseases

    Get PDF
    The endothelium plays a crucial role in inflammation. A balanced control of inflammation requires the action of glucocorticoids (GCs), steroidal hormones with potent cell-specific anti-inflammatory properties. Besides the classic anti-inflammatory effects of GCs on leukocytes, recent studies confirm that endothelial cells also represent an important target for GCs. GCs regulate different aspects of endothelial physiology including expression of adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintenance of endothelial barrier integrity. However, the regulation of endothelial GC sensitivity remains incompletely understood. In this review, we specifically examine the endothelial response to GCs in various inflammatory diseases ranging from multiple sclerosis, stroke, sepsis, and vasculitis to atherosclerosis. Shedding more light on the cross talk between GCs and endothelium will help to improve existing therapeutic strategies and develop new therapies better tailored to the needs of patients

    The role of biological rhythms in cancer chemotherapy

    Get PDF

    Comparing Genetic Variation among Latin American Immigrants: Implications for Forensic Casework in the Arizona- and Texas-México Borderlands

    Get PDF
    The humanitarian crisis on the United States-México border is a long standing and evolving crisis in which nearly 8,000 deaths have been reported in the last two decades. These deaths are largely distributed across the Arizona-México and Texas-México border regions where demographic trends for immigrants attempting to cross into the U.S. have shifted dramatically. The demographic change and volume of immigrants seeking shelter in the U.S. presents new challenges for the forensic practitioners entrusted with the identification of individuals who lose their lives during the final segment of their journey. Within this Border context, the present study investigates how genetic variation inferred from forensically significant microsatellites can provide valuable information on regions of origin for unidentified remains on the group level. To explore how we can mobilize these genetic data to inform identification strategies, we conduct a comparative genetic analysis of identified and unidentified immigrant cases from the Arizona- and Texas-México contexts, as well as 27 other Latin American groups. Allele frequencies were utilized to calculate FST, and relationships were visually depicted in a multidimensional scaling plot. A Spearman correlation coefficient analysis assessed the strength and significance of population relationships and an agglomerative clustering analysis assessed population clusters. Results indicate that Arizona-México immigrants have the strongest relationship (\u3e80%) with groups from El Salvador, Guatemala, México, and an indigenous group from Southern México. Texas-México immigrants have the strongest relationships (\u3e80%) with groups from Belize, Colombia, Costa Rica, El Salvador, Guatemala, Honduras, and Nicaragua. These findings agree with, and are discussed in comparison to, previously reported demographic trends, population genetics research, and population history analyses. We emphasize the utility and necessity of coupling genetic variation research with a nuanced anthropological perspective for identification processes in the U.S-México border context

    Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK.

    Get PDF
    Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc

    High capacity data hiding scheme based on (7, 4) Hamming code

    Get PDF
    • …
    corecore